જો $\left(x+x^{\log _{2} x}\right)^{7}$ ના વિસ્તરણમાં ચોથું પદ $4480$ હોય તો $x$ ની કિમંત મેળવો. કે જ્યાં $x \in N$ આપેલ છે.

  • [JEE MAIN 2021]
  • A

    $2$

  • B

    $4$

  • C

    $3$

  • D

    $1$

Similar Questions

જો $\left(\sqrt{\frac{1}{x^{1+\log _{10} x}}}+x^{\frac{1}{12}}\right)^{6}$ ના વિસ્તરણમાં ચોથું પદ $200$ અને  $x > 1$ હોય તો $x$ ની કિમત મેળવો.

  • [JEE MAIN 2019]

ધારો કે $\left(\sqrt{2^{\log _2}\left(10-3^x\right)}+\sqrt[5]{2^{(x-2) \log _2 3}}\right)^m$ નું દ્રીપદી વિસ્તરણ એ $2^{(x-2) \log _2 3}$ની વધતી ધાતમાં લઈએ,તો તેનું છઠ્ઠું પદ $21$ છે.જો આ દ્રીપદી વિસ્તરણના બીજા,ત્રીજા અને ચોથા પદોના સહગુણકો અનુક્રમે સમાંતર શ્રેણી ણા પ્રથમ,ત્રીજા અને પાંચમાં પદો હોય,તો $x$ની શક્ય તમામ કિમતોના વર્ગોનો સરવાળો $..............$ છે.

  • [JEE MAIN 2023]

$\left(\frac{\sqrt[5]{3}}{x}+\frac{2 x}{\sqrt[3]{5}}\right)^{12}, x \neq 0$ નાં વિસ્તરણમાં અચળ પદ જો $\alpha \times 2^8 \times \sqrt[5]{3}$ હોય, તો $25 \alpha=$...............

  • [JEE MAIN 2024]

${\left( {\sqrt[3]{2} + \frac{1}{{\sqrt[3]{3}}}} \right)^n}$ ના વિસ્તરણમાં જો ${7^{th}}$ મું પદ શરૂઆતથી અને અંતથી ${7^{th}}$ મું પદનો ગુણોતર $\frac{1}{6}$, તો $n = . . . .$

જો $(1+a)^{n}$ ના વિસ્તરણમાં $a^{r-1}, a^{r}$ અને $a^{r+1}$ ના સહગુણકો સમાંત૨ શ્રેણીમાં હોય, તો સાબિત કરો કે $n^{2}-n(4 r+1)+4 r^{2}-2=0$