यदि फलन $f : R -\{1 .-1\} \rightarrow A , f (x)=\frac{x^{2}}{1-x^{2}}$, द्वारा परिभाषित है तथा आच्छादी (surjective) है, तो $A$ बराबर है :
$R\, - \,[ - 1,0)$
$R\, - \,( - 1,0)$
$R\, - \,\{ - 1\} $
$[0,\infty )$
दिया गया फलन है $f(x) = \frac{{{a^x} + {a^{ - x}}}}{2},$ $(a > 2)$ तब $f(x + y) + f(x - y) = $
यदि फलन $f(x)=\log _e\left(4 x^2+11 x+6\right)+$ $\sin ^{-1}(4 x+3)+\cos ^{-1}\left(\frac{10 x+6}{3}\right)$ का प्रांत $(\alpha, \beta]$ है, तो $36|\alpha+\beta|$ बराबर है :
माना $f:[2,\;2] \to R$ इस प्रकार परिभाषित है, कि $f(x)=\left\{ \begin{align}
& \ \ \ -1,\,\,\,\,-2\le x\le 0\text{ } \\
& x-1,\ \ \ 0\le x\le 2\text{ } \\
\end{align} \right.$ के लिये, तब $\{ x \in ( - 2,\;2):x \le 0$ तथा $f(|x|) = x\} = $
यदि $R=\left\{(x, y): x, y \in Z , x^{2}+3 y^{2} \leq 8\right\}$ पूर्णांक $Z$ के समुच्चय का संबंध है तो $R^{-1}$ का प्रक्षेत्र है
माना $\mathrm{f}^1(\mathrm{x})=\frac{3 \mathrm{x}+2}{2 \mathrm{x}+3}, \mathrm{x} \in \mathrm{R}-\left\{\frac{-3}{2}\right\}$ है $\mathrm{n} \geq 2$ के लिए $\mathrm{f}^{\mathrm{n}}(\mathrm{x})=\mathrm{f}^1 0 \mathrm{f}^{\mathrm{n}-1}(\mathrm{x})$ द्वारा परिभाषित कीजिए। यदि $\mathrm{f}^5(\mathrm{x})=\frac{\mathrm{ax}+\mathrm{b}}{\mathrm{bx}+\mathrm{a}}, \operatorname{gcd}(\mathrm{a}, \mathrm{b})=1$, है, तो $\mathrm{a}+\mathrm{b}$ बराबर है_________.