1.Relation and Function
hard

यदि फलन $f : R -\{1 .-1\} \rightarrow A , f (x)=\frac{x^{2}}{1-x^{2}}$, द्वारा परिभाषित है तथा आच्छादी (surjective) है, तो $A$ बराबर है :

A

$R\, - \,[ - 1,0)$

B

$R\, - \,( - 1,0)$

C

$R\, - \,\{  - 1\} $

D

$[0,\infty )$

(JEE MAIN-2019)

Solution

$y\, = \frac{{{x^2}}}{{1 – {x^2}}}$

Range of $y : R – [ – 1,0)$ for surjective function, $A$ must be same as above range.

Standard 12
Mathematics

Similar Questions

माना कि $E_1=\left\{x \in R : x \neq 1\right.$ और $\left.\frac{x}{x-1}>0\right\}$

और $E_2=\left\{x \in E_1: \sin ^{-1}\left(\log _e\left(\frac{x}{x-1}\right)\right)\right.$ एक वास्तविक संख्या (real number) है $\}$

(यहाँ प्रतिलोम त्रिकोणमितीय फलन (inverse trigonometric function) $\sin ^{-1} x,\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ में मान धारण करता है।)

माना कि फलन $f: E_1 \rightarrow R , f(x)=\log _e\left(\frac{x}{x-1}\right)$ के द्वारा परिभाषित है

और फलन $g: E_2 \rightarrow R , g(x)=\sin ^{-1}\left(\log _e\left(\frac{x}{x-1}\right)\right)$ के द्वारा परिभाषित है।

सूची $I$ सूची $II$
$P$ $f$ का परिसर (range) है $1$ $\left(-\infty, \frac{1}{1- e }\right] \cup\left[\frac{ e }{ e -1}, \infty\right)$
$Q$ $g$ के परिसर में समाहित (contained) है $2$ $(0,1)$
$R$ $f$ के प्रान्त (domain) में समाहित है $3$ $\left[-\frac{1}{2}, \frac{1}{2}\right]$
$S$ $g$ का प्रान्त है $4$ $(-\infty, 0) \cup(0, \infty)$
  $5$ $\left(-\infty, \frac{ e }{ e -1}\right]$
  $6$ $(-\infty, 0) \cup\left(\frac{1}{2}, \frac{ e }{ e -1}\right]$

दिए हुए विकल्पों मे से सही विकल्प है:

medium
(IIT-2018)

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.