माना $[ x ]$ महत्तम पूर्णांक $\leq x$ है, जहों $x \in R$ है। यदि वास्तविक मान फलन $f(x)=\sqrt{\frac{[x] \mid-2}{[x] \mid-3}}$ का प्रांत $(-\infty, a) \cup[b, c) \cup[4, \infty), a < b < c$, है, तो $a+b+c$ का मान है
$-3$
$1$
$-2$
$8$
माना द्विघात बहुपद $f ( x )$ इस प्रकार है कि $f (-2)+ f (3)=0$ है। यदि $f ( x )=0$ का एक मूल $-1$ है, तो $f ( x )=0$ के मूलों का योगफल है :
किसी वास्तविक संख्या $x$ के लिए यदि $[x]$ संख्या $x$ के पूर्णांक भाग को प्रदर्शित करें तो निम्न व्यंजक का मान होगा $\left[ {\frac{1}{2}} \right] + \left[ {\frac{1}{2} + \frac{1}{{100}}} \right] + \left[ {\frac{1}{2} + \frac{2}{{100}}} \right] + .... + \left[ {\frac{1}{2} + \frac{{99}}{{100}}} \right]$
फलन $f(x) = {\sin ^2}({x^4}) + {\cos ^2}({x^4})$ का परिसर है
यदि $f(x) = \frac{x}{{x - 1}} = \frac{1}{y}$, तो $f(y) = $
फलन $f(x) = \;|px - q|\; + r|x|,\;x \in ( - \infty ,\;\infty )$, जहाँ $p > 0,\;q > 0,\;r > 0$ का केवल एक बिन्दु पर निम्निष्ठ मान होगा यदि