यदि अतिपरवलय का नाभिलम्ब 8 तथा उत्केन्द्रता $\frac{3}{{\sqrt 5 }}$ हों, तो उसका समीकरण होगा
$4{x^2} - 5{y^2} = 100$
$5{x^2} - 4{y^2} = 100$
$4{x^2} + 5{y^2} = 100$
$5{x^2} + 4{y^2} = 100$
वक्र ${b^2}{x^2} - {a^2}{y^2} = {a^2}{b^2}$ के बिन्दु $(a\sec \theta ,\;b\tan \theta )$ पर अभिलम्ब का समीकरण है
यदि अतिपरवलय $16 x ^{2}-9 y ^{2}=144$ की नियता (directrix) $5 x+9=0$ है, तो इसका संगत नाभिकेन्द्र है
वक्र $\frac{{{x^2}}}{{{A^2}}} - \frac{{{y^2}}}{{{B^2}}} = 1$ पर स्थित एक बिन्दु है
रेखाओं $(\sqrt{3}) kx + ky -4 \sqrt{3}=0$ तथा $\sqrt{3} x - y -4(\sqrt{3}) k =0$ के प्रतिच्छेदन बिंदु का बिंदुपथ एक शांकव है, जिसकी उत्केन्द्रता है .......... |
परवलय ${y^2} = 8x$ व अतिपरवलय $3{x^2} - {y^2} = 3$ की उभयनिष्ठ स्पर्श रेखाओं का समीकरण है