वक्र ${x^2} - {y^2} = {a^2}$ की उत्केन्द्रता होगी
$2$
$\sqrt 2 $
$4$
इनमें से कोई नहीं
अतिपरवलय $5{x^2} - 9{y^2} = 45$की स्पर्श रेखा $y = x + 2$ का स्पर्श बिन्दु है
अतिपरवलय $9{x^2} - 16{y^2} + 18x + 32y - 151 = 0$ का केन्द्र है
माना $a$ तथा $b$ धनात्मक वास्तविक संख्यायें इस प्रकार है कि $a >1$ तथा $b < a$ है। माना एक बिन्दु $P$ प्रथम चतुर्थाश में अतिपरवलय पर स्थित है। माना अतिपरवलय के बिन्दु $P$ पर खींची गई स्पर्श रेखा बिन्दु $(1,0)$ से गुजरती है तथा अतिपरवलय के बिन्दु $P$ पर खींचा गया अभिलम्ब निर्देशी अक्षों पर समान अन्त: खण्ड कास्ता है। माना बिन्दु $P$ पर स्पर्श रेखा, बिन्दु $P$ पर अभिलम्ब तथा $x$-अक्ष द्वारा निर्मित त्रिभुज के क्षेत्रफल को $\Delta$ से दर्शाते है। यदि अतिपरवलय की उत्केन्द्रता को $e$ से दर्शाते है, तो निम्न में से कौनसा/कौनसे कथन सत्य होगा/होंगे ?
$(A)$ $1 < e < \sqrt{2}$
$(B)$ $\sqrt{2} < e < 2$
$(C)$ $\Delta=a^4$
$(D)$ $\Delta=b^4$
रेखा $3x - 4y = 5$ अतिपरवलय ${x^2} - 4{y^2} = 5$ की एक स्पर्श रेखा है तो स्पर्श बिन्दु है
अतिपरवलय $5{x^2} - 4{y^2} + 20x + 8y = 4$ की उत्केन्द्रता है