वक्र ${x^2} - {y^2} = {a^2}$ की उत्केन्द्रता होगी
$2$
$\sqrt 2 $
$4$
इनमें से कोई नहीं
(b) आयताकार अतिपरवलय की उत्केन्द्रता $\sqrt 2 $ होती है।
एक अतिपरवलय का केन्द्र मूलबिन्दु पर है तथा यह बिन्दु $(4,-2 \sqrt{3})$ से होकर जाता है। यदि इसकी एक नियता (directrix) $5 x =4 \sqrt{5}$ है तथा इसकी उत्केन्द्रता $e$ है, तो
यदि किसी अतिपरवलय के अनुप्रस्थ तथा संयुग्मी अक्ष क्रमश: $8$ तथा $6$ हों, तो अतिपरवलय के किसी बिन्दु की नाभीय दूरियों का अन्तर होगा
प्रतिबंधों को संतुष्ट करते हुए अतिपरवलय का समीकरण ज्ञात कीजिए
शीर्ष $(\pm 2,0),$ नाभियाँ $(±3,0)$
यदि अतिपरवलय $\frac{{{x^2}}}{{{a^2}}} – \frac{{{y^2}}}{{{b^2}}} = 1$ पर दो स्पर्श रेखायें इस प्रकार खींची जाती हैं कि उनकी प्रवणताओं का गुणनफल ${c^2}$ है, तो वे निम्न वक्र पर प्रतिच्छेद करती हैं
एक अतिपरवलय बिन्दुओं $(3, 2)$ तथा $(-17, 12)$ से गुजरता है और उसका केन्द्र मूलबिन्दु पर है तथा अनुप्रस्थ अक्ष $x$ – अक्ष है। अतिपरवलय की अनुप्रस्थ अक्ष की लम्बाई है
Confusing about what to choose? Our team will schedule a demo shortly.