यदि रेखा $y = 2x + \lambda $ अतिपरवलय $36{x^2} - 25{y^2} = 3600$ की स्पर्श रेखा हो तो $\lambda = $
$16$
$-16$
$ \pm 16$
इनमें से कोई नहीं
प्रतिबंधों को संतुष्ट करते हुए अतिपरवलय का समीकरण ज्ञात कीजिए
नाभियाँ $(\pm 3 \sqrt{5}, 0),$ नाभिलंब जीवा की लंबाई $8$ है।
यदि एक अतिपरवलय के शीर्ष $(-2,0)$ तथा $(2,0)$ पर हैं तथा इसकी एक नाभि $(-3,0)$ पर है, तो निम्न में से कौन सा बिन्दु इस अतिपरवलय पर स्थित नहीं है ?
यदि अतिपरवलय का केन्द्र, शीर्ष तथा नाभि क्रमश: $ (0, 0), (4, 0)$ तथा $(6, 0)$ हों, तो अतिपरवलय का समीकरण होगा
यदि किसी अतिपरवलय के अनुप्रस्थ तथा संयुग्मी अक्ष क्रमश: $8$ तथा $6$ हों, तो अतिपरवलय के किसी बिन्दु की नाभीय दूरियों का अन्तर होगा
यदि $5{x^2} + \lambda {y^2} = 20$ एक समकोणीय अतिपरवलय निरूपित करता है, तो $\lambda $ बराबर होगा