यदि रेखा $y = 2x + \lambda $ अतिपरवलय $36{x^2} - 25{y^2} = 3600$ की स्पर्श रेखा हो तो  $\lambda  = $

  • A

    $16$

  • B

    $-16$

  • C

    $ \pm 16$

  • D

    इनमें से कोई नहीं

Similar Questions

प्रतिबंधों को संतुष्ट करते हुए अतिपरवलय का समीकरण ज्ञात कीजिए

नाभियाँ $(\pm 3 \sqrt{5}, 0),$ नाभिलंब जीवा की लंबाई $8$ है।

यदि एक अतिपरवलय के शीर्ष $(-2,0)$ तथा $(2,0)$ पर हैं तथा इसकी एक नाभि $(-3,0)$ पर है, तो निम्न में से कौन सा बिन्दु इस अतिपरवलय पर स्थित नहीं है ?

  • [JEE MAIN 2019]

यदि अतिपरवलय का केन्द्र, शीर्ष तथा नाभि क्रमश: $ (0, 0), (4, 0)$ तथा  $(6, 0)$ हों, तो अतिपरवलय का समीकरण होगा  

यदि किसी अतिपरवलय के अनुप्रस्थ तथा संयुग्मी अक्ष क्रमश: $8$ तथा $6$ हों, तो अतिपरवलय के किसी बिन्दु की नाभीय दूरियों का अन्तर होगा  

यदि  $5{x^2} + \lambda {y^2} = 20$ एक समकोणीय अतिपरवलय निरूपित करता है, तो $\lambda $ बराबर होगा