3 and 4 .Determinants and Matrices
normal

If the lines $x + 2ay + a = 0, x + 3by + b = 0$ and $x + 4cy + c = 0$ are concurrent, then $a, b$  and $c$ are in :-

A

$A.P.$

B

$G.P.$

C

$H.P.$

D

None of these

Solution

Given lines will be concurrent if

$\left| {\begin{array}{*{20}{l}}
  1&{2a}&a \\ 
  1&{3b}&b \\ 
  1&{4c}&c 
\end{array}} \right| = 0 \Rightarrow  – bc + 2ac – ab = 0 \Rightarrow b$

$= \frac{{2ac}}{{a + c}} \Rightarrow a,b,c$ are in $ H.P.$

Standard 12
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.