- Home
- Standard 12
- Mathematics
3 and 4 .Determinants and Matrices
medium
If the system of linear equations $2 x-3 y=\gamma+5$ ; $\alpha x+5 y=\beta+1$, where $\alpha, \beta, \gamma \in R$ has infinitely many solutions, then the value of $|9 \alpha+3 \beta+5 \gamma|$ is equal to
A
$56$
B
$89$
C
$58$
D
$30$
(JEE MAIN-2022)
Solution
$2 x-3 y=\gamma+5$
$\alpha x+5 y=\beta+1$
Infinite many solution
$\frac{\alpha}{2}=\frac{5}{-3}=\frac{\beta+1}{\gamma+5}$
$\alpha=\frac{-10}{3}, \quad 5 \gamma+25=-3 \beta-3$
$9 \alpha=-30, \quad 3 \beta+5 \gamma=-28$
$\text { Now, } 9 \alpha+3 \beta+5 \gamma=-58$
$|9 \alpha+3 \beta+5 \gamma|=58$
Standard 12
Mathematics