જો બે સદીશોના સરવાળાનું મૂલ્ય એ તેમની બાદબાકીના મૂલ્ય બરાબર હોય, તો આ બે સદીશો વચ્ચેનો ખૂણો ($^o$ માં) કેટલો હશે?
$90$
$120$
$45$
$60$
એક ખુલ્લા મેદાનમાં એક કારચાલક એવો રસ્તો પકડે છે કે જે દરેક $500$ મીટર અંતર બાદ તેની ડાબી બાજુ $60^{°}$ ના ખૂણે વળાંક લે છે. એક વળાંકથી શરૂ કરી, કારચાલકના ત્રીજા, છઠ્ઠા તથા આઠમા વળાંક પાસે સ્થાનાંતર શોધો. આ દરેક સ્થિતિમાં કારચાલકની કુલ પથ લંબાઈની તેના સ્થાનાંતરના માન સાથે તુલના કરો.
$F$ અને $2F$ બળોનું પરિણામી એ $F$ ને લંબ છે.તો બે બળ વચ્ચેનો ખૂણો ........ $^o$ હશે.
જો $\vec{P}+\vec{Q}=\vec{P}-\vec{Q}$, હોય તો,
સદિશોના સરવાળા માટેના બે ગુણધર્મ લખો.
બે સદિશોના મૂલ્ય $5\, N$ અને $12 \,N$ વચ્ચેનો ખૂણો કેટલો રાખવાથી પરિણામી સદિશનું મૂલ્ય અનુક્રમે $17\, N$, $7\, N$ અને $13\, N$ મળે?