10-2. Parabola, Ellipse, Hyperbola
hard

If the maximum distance of normal to the ellipse $\frac{x^2}{4}+\frac{y^2}{b^2}=1, b < 2$, from the origin is $1$ , then the eccentricity of the ellipse is:

A

$\frac{1}{\sqrt{2}}$

B

$\frac{\sqrt{3}}{2}$

C

$\frac{1}{2}$

D

$\frac{\sqrt{3}}{4}$

(JEE MAIN-2023)

Solution

Equation of normal is

$2 x \sec \theta-b y \operatorname{cosec} \theta=4-b^2$

Distance from $(0,0)=\frac{4-b^2}{\sqrt{4 \sec ^2 \theta+b^2 \operatorname{cosec}^2 \theta}}$

Distance is maximum if

$4 \sec ^2 \theta+b^2 \operatorname{cosec}^2 \theta$ is minimum

$\Rightarrow \tan ^2 \theta=\frac{b}{2}$

$\Rightarrow \frac{4-b^2}{\sqrt{4 \cdot \frac{b+2}{2}+b^2 \cdot \frac{b+2}{b}}}=1$

$\Rightarrow 4-b^2=b+2 \Rightarrow b=1 \Rightarrow e =\frac{\sqrt{3}}{2}$

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.