यदि सभी स्वतंत्र राशियों (independent quantities) की मापन त्रुटियाँ (measurement errors) ज्ञात हो, तो किसी निर्भर राशि (dependent quantity) की त्रुटि का परिकलन (calculation) किया जा सकता है। इस परिकलन में श्रेणी प्रसार (series expansion) का प्रयोग किया जाता है और इस प्रसार को त्रुटि (error) के पहले घात (first power) पर रून्डित (truncate) किया जाता है। उदाहरण स्वरूप, सम्बन्ध $z=x / y$ में यदि $x, y$ और $z$ की त्रुटियाँ क्रमशः $\Delta x, \Delta y$ और $\Delta z$ हों, तो
$z \pm \Delta z=\frac{x \pm \Delta x}{y \pm \Delta y}=\frac{x}{y}\left(1 \pm \frac{\Delta x}{x}\right)\left(1 \pm \frac{\Delta y}{y}\right)^{-1} .$
$\left(1 \pm \frac{\Delta y}{y}\right)^{-1}$ का श्रेणी प्रसार, $\Delta y / y$ में पहले घात तक, $1 \mp(\Delta y / y)$ है। स्वतंत्र राशियों की आपेक्षिक त्रुटियाँ (relative errors) सदैव जोड़ी जाती हैं। इसलिए $z$ की त्रुटि होगी
$\Delta z=z\left(\frac{\Delta x}{x}+\frac{\Delta y}{y}\right) .$
उपरोक्त परिकलन में $\Delta x / x \ll 1, \Delta y / y \ll 1$ माने गये हैं। इसलिए इन राशियों की उच्चतर घातें (higher powers) उपेक्षित हैं।
($1$) एक विमा-रहित (dimensionless) राशि $a$ को माप कर, एक अनुपात (ratio) $r=\frac{(1-a)}{(1+a)}$ का परिकलन करना है। यदि $a$ की मापन की त्रुटि $\Delta a$ है $(\Delta a / a \ll 1)$, तो $r$ के परिकलन की त्रुटि $\Delta r$ क्या होगी ?
$(A)$ $\frac{\Delta \mathrm{a}}{(1+\mathrm{a})^2}$ $(B)$ $\frac{2 \Delta \mathrm{a}}{(1+\mathrm{a})^2}$ $(C)$ $\frac{2 \Delta \mathrm{a}}{\left(1-\mathrm{a}^2\right)}$ $(D)$ $\frac{2 \mathrm{a} \Delta \mathrm{a}}{\left(1-\mathrm{a}^2\right)}$
($2$) एक प्रयोग के आरंभ में रेडियोएक्टिव नाभिकों की संख्या $3000$ है। प्रयोग के पहले $1.0$ सेकंड में $1000 \pm 40$ नाभिकों का क्षय हो जाता है $\mid$ यदि $|x| \ll 1$ हो, तो $x$ के पहले घात तक $\ln (1+x)=x$ है। क्षयांक (decay constant) $\lambda$ के निर्धारण में त्रुटि $\Delta \lambda, s^{-1}$ में, है
$(A) 0.04$ $(B) 0.03$ $(C) 0.02$ $(D) 0.01$
इस प्रश्न के उतर दीजिये $1$ ओर $2.$
$B,C$
$B,D$
$B,A$
$B,C,D$
यदि वस्तु नियत चाल से $(4.0 \pm 0.3)$ में $ (13.8 \pm 0.2) m$ की दूरी तय करती है। त्रुटि की सीमाओं के भीतर वस्तु का वेग होगा
किसी भौतिक राशि ' $y$ ' को नीचे दिए गए सूत्र द्वारा निरूपित किया गया है। $y = m ^{2} r ^{-4} g ^{ x } l^{-\frac{3}{2}}$ यदि $y , m$, r. $l$ और $g$ में त्रटि-प्रतिशतता क्रमश: $18,1,0.5,4$ और $p$ है, तो $x$ और $p$ के मान होंगे?
एक सरल दोलक के प्रयोग, जिसमें गुरुत्वीय त्वरण $( g )$ मापना है, में $20$ दोलनों का समय एक $1 \,sec$. अल्पतमांक वाली एक विराम घड़ी से मापते हैं। इस समय का माध्य मान $30 \,s$ आता है। दोलक की लम्बाई को $1 \,mm$ अल्पतमांक के पैमाने से मापने पर $55.0 \,cm$ आती है। $g$ के मापन में प्रतिशत त्रुटि का सन्निकट मान .......... $\%$ होगा।
एक प्रयोग में निम्न प्रेक्षण लिए गये: $L = 2.820\, m, M = 3.00 \,kg, l = 0.087 \,cm$, Diameter $D = 0.041 \,cm$ Taking $g = 9.81$ $m/{s^2}$ लेकर तथा सूत्र $Y=\frac{{4MgL}}{{\pi \,{D^2}l}}$ का उपयोग करते हुए $Y$ में अधिकतम प्रतिशत त्रुटि प्राप्त ......... $\%$ होगी
यदि, $Z =\frac{ A ^2 B ^3}{ C ^4}$, तब $Z$ में सापेक्षिक न्रुटि होगी :