Using properties of determinants, prove that:

$\left| {\begin{array}{*{20}{l}}
  {\sin \alpha }&{\cos \alpha }&{\cos (\alpha  + \delta )} \\ 
  {\sin \beta }&{\cos \beta }&{\cos (\beta  + \delta )} \\ 
  {\sin \gamma }&{\cos \gamma }&{\cos (\gamma  + \delta )} 
\end{array}} \right| = 0$

Vedclass pdf generator app on play store
Vedclass iOS app on app store

$\Delta=\left|\begin{array}{lll}\sin \alpha & \cos \alpha & \cos (\alpha+\delta) \\ \sin \beta & \cos \beta & \cos (\beta+\delta) \\ \sin \gamma & \cos \gamma & \cos (\gamma+\delta)\end{array}\right|$

$=\frac{1}{\sin \delta \cos \delta}\left|\begin{array}{ccc}\sin \alpha \sin \delta & \cos \alpha \cos \delta & \cos \alpha \cos \delta-\sin \alpha \sin \delta \\ \sin \beta \sin \delta & \cos \beta \cos \delta & \cos \beta \cos \delta-\sin \beta \sin \delta \\ \sin \gamma \sin \delta & \cos \gamma \cos \delta & \cos \gamma \cos \delta-\sin \gamma \sin \delta\end{array}\right|$

Applying $C_{1} \rightarrow+C_{1}+C_{3},$ we have:

$\Delta=\frac{1}{\sin \delta \cos \delta}\left|\begin{array}{lll}
\cos \alpha \cos \delta & \cos \alpha \cos \delta & \cos \alpha \cos \delta-\sin \alpha \sin \delta \\
\cos \beta \cos \delta & \cos \beta \cos \delta & \cos \beta \cos \delta-\sin \beta \sin \delta \\
\cos \gamma \cos \delta & \cos \gamma \cos \delta & \cos \gamma \cos \delta-\sin \gamma \sin \delta
\end{array}\right|$

Here, two columns $C_{1}$ and $C_{2}$ are identical.

$\therefore \Delta=0$

Hence, the given result is proved.

Similar Questions

If $\left| {\,\begin{array}{*{20}{c}}{{{(b + c)}^2}}&{{a^2}}&{{a^2}}\\{{b^2}}&{{{(c + a)}^2}}&{{b^2}}\\{{c^2}}&{{c^2}}&{{{(a + b)}^2}}\end{array}\,} \right| = k\,abc{(a + b + c)^3}$, then the value of $k$ is

$\left| {\,\begin{array}{*{20}{c}}{b + c}&{a - b}&a\\{c + a}&{b - c}&b\\{a + b}&{c - a}&c\end{array}\,} \right| = $

If $\mathrm{a, b, c}$ are positive and unequal, show that value of the determinant $\Delta=\left|\begin{array}{lll}a & b & c \\ b & c & a \\ c & a & b\end{array}\right|$ is negative.

 

Using the property of determinants and without expanding, prove that:

$\left|\begin{array}{lll}b+c & q+r & y+z \\ c+a & r+p & z+x \\ a+b & p+q & x+y\end{array}\right|=2\left|\begin{array}{lll}a & p & x \\ b & q & y \\ c & r & z\end{array}\right|$

If $x, y, z$ are different and $\Delta=\left|\begin{array}{lll}x & x^{2} & 1+x^{2} \\ y & y^{2} & 1+y^{2} \\ z & z^{2} & 1+z^{2}\end{array}\right|=0,$ then show that $1+x y z=0$.