In a triangle $A B C$ with fixed base $B C$, the vertex $A$ moves such that $\cos B+\cos C=4 \sin ^2 \frac{A}{2} .$ If $a, b$ and $c$ denote the lengths of the sides of the triangle opposite to the angles $A, B$ and $C$, respectively, then
$(A)$ $b+c=4 a$
$(B)$ $b+c=2 a$
$(C)$ locus of point $A$ is an ellipse
$(D)$ locus of point $A$ is a pair of straight lines
$(B,C)$
$(B,D)$
$(A,C)$
$(A,D)$
Two sets $A$ and $B$ are as under:
$A = \{ \left( {a,b} \right) \in R \times R:\left| {a - 5} \right| < 1 \,\,and\,\,\left| {b - 5} \right| < 1\} $; $B = \left\{ {\left( {a,b} \right) \in R \times R:4{{\left( {a - 6} \right)}^2} + 9{{\left( {b - 5} \right)}^2} \le 36} \right\}$ then : . . . . .
Tangents at extremities of latus rectum of ellipse $3x^2 + 4y^2 = 12$ form a rhombus of area (in $sq.\ units$) -
The locus of the poles of normal chords of an ellipse is given by
The length of the latus rectum of the ellipse $\frac{{{x^2}}}{{36}} + \frac{{{y^2}}}{{49}} = 1$
For the ellipse $3{x^2} + 4{y^2} = 12$, the length of latus rectum is