यदि दीर्घवृत्त $\frac{{{x^2}}}{{14}} + \frac{{{y^2}}}{5} = 1$ के बिन्दु $P(\theta )$ पर खींचे गये अभिलम्ब इसे पुन: $Q(2\theta )$ पर प्रतिच्छेद करते हैं, तो $\cos \theta $ बराबर है
$\frac{2}{3}$
$ - \frac{2}{3}$
$\frac{3}{2}$
$ - \frac{3}{2}$
दीर्घवृत्त $\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} = 1$ के बिन्दु $'\theta '$ की नाभि से दूरी होगी
माना दीर्घवृत्त $9 x^2+4 y^2=36$ पर चार बिंदु $\mathrm{P}\left(\frac{2 \sqrt{3}}{\sqrt{7}}, \frac{6}{\sqrt{7}}\right), \mathrm{Q}, \mathrm{R}$ तथा $\mathrm{S}$ हैं। माना रेखाखंड $\mathrm{PQ}$ तथा $\mathrm{RS}$ परस्पर लंबवत है तथा मूलबिंदु से होकर जाते हैं। यदि $\frac{1}{(\mathrm{PQ})^2}+\frac{1}{(\mathrm{RS})^2}=\frac{\mathrm{p}}{\mathrm{q}}$, जहाँ $\mathrm{p}$ तथा $q$ असहभाज्य है, तो $\mathrm{p}+\mathrm{q}$ बराबर है :
दीर्घवृत्त $\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} = 1$ के अक्ष तथा स्पश्री के मध्य खींची गयी रेखा के मध्य बिन्दु का बिन्दुपथ होगा
यदि एक दीर्घवृत्त के दीर्घ अक्ष की लम्बाई, इसके लघु अक्ष की लम्बाई की तिगुनी है, तो इसकी उत्केन्द्रता होगी
दीर्घवृत्त $\frac{{{x^2}}}{{64}} + \frac{{{y^2}}}{{28}} = 1$ की उत्केन्द्रता है