10-2. Parabola, Ellipse, Hyperbola
hard

If the normal to the ellipse $3x^2 + 4y^2 = 12$ at a point $P$ on it is parallel to the line, $2x + y = 4$ and the tangent to the ellipse at $P$ passes through $Q(4, 4)$ then $PQ$ is equal to

A

$\frac{{\sqrt {157} }}{2}$

B

$\frac{{5\sqrt 5 }}{2}$

C

$\frac{{\sqrt {221} }}{2}$

D

$\frac{{\sqrt {61} }}{2}$

(JEE MAIN-2019)

Solution

$3{x^2} + 4{y^2} = 12$

$\frac{{{x^2}}}{4} + \frac{{{y^2}}}{3} = 1$

$x = 2\,\cos \theta ,y = \sqrt 3 \sin \theta $ Equation of noraml is $\frac{{{a^2}x}}{{{x_1}}} + \frac{{{b^2}y}}{{{y_1}}} = {a^2} – {b^2}$

$2\,x\,\sin \theta  – \sqrt 3 \cos \theta y = \sin \theta \cos \theta $

Slope $\frac{2}{{\sqrt 3 }}\tan \theta  =  – 2\,\,\,\,\,$            $\therefore \tan \theta  =  – \sqrt 3 $

equation of tangent is it passes through $(4,4)$

$3\,x\cos \theta  + 2\sqrt 3 \sin \theta y = 6$

$12\cos \theta  + 8\sqrt 3 \sin \theta y = 6$

$\cos \theta  =  – \frac{1}{2},\sin \theta  = \frac{{\sqrt 3 }}{2}\therefore {120^o}$

Hence point $P$ is $\left( {2\cos \theta {{120}^o},\sqrt 3 \sin {{120}^o}} \right)$

$P\left( { – 1,\frac{2}{2}} \right),Q\left( {4,4} \right)$

$PQ = \frac{{5\sqrt 5 }}{2}$

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.