यदि संख्याएँ $a,\;b,\;c,\;d,\;e$ एक समान्तर श्रेणी बनाती हैं, तब $a - 4b + 6c - 4d + e$ का मान है
$1$
$2$
$0$
इनमें से कोई नहीं
माना $a _{1}, a _{2}, \ldots \ldots a _{30}$ एक समांतर श्रेणी है. $S =\sum_{i=1}^{30} a _{i}$ तथा $T = \sum\limits_{i = 1}^{15} {{a_{2i - 1}}} $ यदि $a _{5}=27$ तथा $S -2 T =75$, तो $a _{10}$ बराबर है
यदि एक समान्तर श्रेणी के प्रथम $n$ पदों का योग उसके प्रथम $m$ पदों के योग के बराबर हो $(m \ne n)$, तो उसके $(m + n)$ पदों का योग होगा
माना एक समान्तर श्रेणी के प्रथम $\mathrm{n}$ पदों का योग $\mathrm{S}_{\mathrm{n}}$ है। यदि $\mathrm{S}_{10}=390$ तथा दसवें और पाँचवें पदों का अनुपात $15: 7$ है। तो $\mathrm{S}_{15}-\mathrm{S}_5$ बराबर है :
श्रेणी $101 + 99 + 97 + ..... + 47$ में पदों की संख्या है
माना कि $X$ समान्तर श्रेणी (arithmetic progression) $1, 6, 11, ...$ के प्रथम $2018$ पदों का समुच्चय (set) है, और $Y$ समान्तर श्रेणी $9,16,23, \ldots$ के प्रथम $2018$ पदों का समुच्चय है। तब समुच्चय $X \cup Y$ में अवयवों (elements) की संख्या है................|