यदि किसी समान्तर अनुक्रम की तीन संख्याओं का योग $15$ एवं उनके वर्गों का योग $83$ हो, तो संख्यायें हैं
$4, 5, 6$
$3, 5, 7$
$1, 5, 9$
$2, 5, 8$
दो समान्तर श्रेणीयों $3,7,11, \ldots .407$ एवं $2,9,16, \ldots .709$ में उभयनिष्ठ पदों की संख्या है।
माना $a_1, a_2, \ldots ., a_n, \ldots$ वास्तविक संख्याओं की एक समांतर श्रेढ़ी है। यदि इस श्रेढ़ी के प्रथम पाँच पदों के योग का, प्रथम नौ पदों के योग से अनुपात $5: 17$ है तथा $110 < a_{15} < 120$ है, तो इस श्रेढ़ी के प्रथम दस पदों का योग है -
यदि किसी समान्तर श्रेणी के $10$ पदों का योगफल इसके $5$ पदों के योगफल से $4$ गुना है, तो प्रथम पद व सार्वअन्तर का अनुपात है
यदि किसी समान्तर श्रेणी का $9$ वाँ पद $35$ एवं $19$ वाँ पद $75$ है, तो इसका $20$ वाँ पद होगा
अनुक्रम, जिसका $n$ वाँ पद $\left( {\frac{n}{x}} \right) + y$ हो, तो श्रेणी के $r$ पदों का योगफल होगा