यदि बिंदु $(1,4)$ वृत्त $x^{2}+y^{2}-6 x-10 y+p=0$ के अन्त: भाग में स्थित है तथा वृत्त, निर्देशांक अक्षों को न तो स्पर्श करता है, और न ही काटता है, तो $p$ के सभी संभव मानों का समुच्चय निम्न अतंराल है
$(0,25)$
$(25, 39)$
$(9, 25)$
$(25, 29)$
यदि किसी वृत्त का केन्द्र $(2, 3)$ एवं एक स्पर्श रेखा $x + y = 1$ है, तो इस वृत्त का समीकरण है
यदि रेखा $y = mx + c$ वृत्त ${x^2} + {y^2} = {a^2}$ की एक स्पर्श रेखा हो, तो स्पर्श बिन्दु होगा
उस वृत्त जिसका केन्द्र सरल रेखाओं $x-y=1$ तथा $2 x+y=3$ का प्रतिच्छेद बिंदु है, के बिंदु $(1,-1)$ पर खींची गई स्पर्श रेखा का समीकरण है
रेखा $x + 2y = 3$ के समान्तर, वृत्त ${x^2} + {y^2} - 2x = 0$ के अभिलम्ब का समीकरण है
यदि बिन्दु $(1, 2)$ से वृत्त ${x^2} + {y^2} - 2x - 4y + \lambda = 0$ पर असंख्य स्पर्श रेखाएँ खींची जा सकती हों, तो $\lambda = $