यदि रेखाएँ $3x - 4y + 4 = 0$ तथा $6x - 8y - 7 = 0$ एक वृत्त की स्पर्श रेखाएँ हों, तो वृत्त की त्रिज्या है
$3\over2$
$3\over4$
$1\over10$
$1\over20$
वृत्त ${x^2} + {y^2} = 13$ के उन बिन्दुओं पर जिनके भुज $2$ हैं, स्पर्श रेखाओं के समीकरण होंगे
युगल स्पर्श रेखायें मूल बिन्दु से वृत्त ${x^2} + {y^2} + 20(x + y) + 20 = 0$ पर खींची गयी हैं। युगल स्पर्श रेखाओं का समीकरण है
यदि रेखा $lx + my = 1$, वृत्त ${x^2} + {y^2} = {a^2}$ की एक स्पर्श रेखा हो तो बिन्दु $(l, m)$ का बिन्दुपथ है
मूल बिन्दु से वृत्त ${x^2} + {y^2} - 2rx - 2hy + {h^2} = 0$ पर खींची गयी स्पर्श रेखाओं के समीकरण हैं
यदि वृत्त $S \equiv {x^2} + {y^2} + 2gx + 2fy + c = 0$ द्वारा बिन्दु $P({x_1},{y_1})$ पर अन्तरित कोण $\theta $ हो, तो