मानाकि वृत्त $C$ सरल रेखा $L _1: 4 x -3 y + K _1=0$ तथा $L _2: 4 x -3 y + K _2=0, K _1, K _2 \in R$ को स्पर्श करता टै। यदि एक सरल रेखा वृत्त $C$ के केन्द्र से गुजरती है $L _1$ को $(-1,2)$ तथा $L _2$ को $(3,-6)$ पर प्रतिच्छेद करती है तो वृत्त $C$ का समीकऱण होगा

  • [JEE MAIN 2022]
  • A

    $(x-1)^{2}+(y-2)^{2}=4$

  • B

    $(x+1)^{2}+(y-2)^{2}=4$

  • C

     $(x-1)^{2}+(y+2)^{2}=16$

  • D

    $(x-1)^{2}+(y-2)^{2}=16$

Similar Questions

रेखा $5x + 12y + 8 = 0$ के लम्बवत् वृत्त ${x^2} + {y^2} - 22x - 4y + 25 = 0$ की स्पर्श रेखाओं के समीकरण हैं

वृत्त ${x^2} + {y^2} = 36$ की उन स्पर्श रेखाओं के समीकरण जो $x$-अक्ष से ${45^o}$ के कोण पर झुकी हों, होंगे

एक वृत्त $C _1$ मूल बिंदु $O$ से होकर जाता है तथा धनात्मक $x$-अक्ष पर इसका व्यास 4 है। रेखा $y =$ $2 x$ से वृत्त $C _1$ की जीवा $OA$ बनती है। माना $C _2$ वह वृत्त है, जिसका एक व्यास $OA$ है। यदि बिंदु $A$ पर $C _2$ की स्पर्श रेखा $x$-अक्ष को $P$ पर तथा $y$ अक्ष को $Q$ पर मिलती है, तो $QA : AP$ बराबर है:

  • [JEE MAIN 2022]

वृत्त ${x^2} + {y^2} = {a^2}$ के बिन्दु $(a\cos \alpha ,a\sin \alpha )$ पर स्पर्श रेखा की प्रवणता है

यदि बिन्दु $(5, 3)$ से वृत्त ${x^2} + {y^2} + 2x + ky + 17 = 0$ पर खींची गई स्पर्श रेखा की लम्बाई $7$ हो, तो $k$ =