If the point $(3, \,4)$ lies on the graph of the equation $3y = ax + 7$, find the value of $a$.
The equation of the given line is. $3 y= ax +7$
$\because \,\,\,(3,\,4)$ lies on the given line.
$\therefore $ It must satisfy the equation $3 y = ax +7$
We have $(3,\,4) \Rightarrow x=3$ and $y=4$
L.H.S. $=3 y$ R .H.S. $= ax +7$
$=3 \times 4$ $=a \times 3+7$
$=12$ $=3 a+7$
$\because $ L.H.S. $=$ R.H.S.
$\therefore $ $12=3 a+7$
or $3 a=12-7=5$
or $a=\frac{5}{3}$
Thus, the required value of a is $\frac{5}{3}$.
For each of the graphs given in Fig. select the equation whose graph it is from the choices given below :
$(a)$ For Fig. $(i)$,
$(i)$ $x+y=0$ $(ii)$ $y=2 x$ $(iii)$ $y=x$ $(iv)$ $y=2 x+1$
$(b)$ For Fig. $(ii)$,
$(i)$ $x+y=0$ $(ii)$ $y=2 x$ $(iii)$ $y=2x+4$ $(iv)$ $y=x-4$
$(c)$ For Fig. $(iii)$,
$(i)$ $x+y=0$ $(ii)$ $y=2 x$ $(iii)$ $y=2x+1$ $(iv)$ $y=2 x-4$
Express the following linear equations in the form $ax + by + c = 0$ and indicate the values of $a$, $b$ and $c$ in each case : $x-\frac{y}{5}-10=0$
Express the following linear equations in the form $ax + by + c = 0$ and indicate the values of $a$, $b$ and $c$ in each case : $5=2 x$
Give the geometric representations of $2x + 9 = 0$ as an equation
$(i)$ in one variable
$(ii)$ in two variables
Express the following linear equations in the form $ax + by + c = 0$ and indicate the values of $a$, $b$ and $c$ in each case : $3 x+2=0$