Gujarati
Hindi
5.Work, Energy, Power and Collision
normal

If the potential energy of a gas molecule is

$U = \frac{M}{{{r^6}}} - \frac{N}{{{r^{12}}}}$,

$M$ and $N$ being positive constants, then the potential energy at equilibrium must be

A

Zero

B

$M^2/4N$

C

$NM^2/4$

D

$MN^2/4$

Solution

Given in question,

$U=\frac{M}{r^{6}}-\frac{N}{r^{12}}$

$\therefore F=\frac{-d u}{d r}=\frac{-d}{d r}\left(\frac{M}{r^{6}}-\frac{N}{r^{12}}\right)$

$=-\left(\frac{-6 M}{r^{7}}+\frac{12 N}{r^{13}}\right)=\left(\frac{6 M}{r^{7}}-\frac{12 N}{r^{13}}\right)$

For equilibrium position, Force $F=0$

$\therefore \frac{6 M}{r^{7}}=\frac{12 N}{r^{13}}$ or $r^{6}=\frac{2 N}{M}$

Hence, $U=\frac{M}{(2 N / M)}-\frac{N}{(2 N / M)^{2}}=\frac{M^{2}}{4 N}$

So the potential energy at equilibrium must be $U=\frac{M^{2}}{4 N}$

Standard 11
Physics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.