7.Gravitation
normal

If the radius of earth shrinks by $1.5 \%$ (mass remaining same), then the value of gravitational acceleration changes by ......... $\%$

A

$2$

B

$-2$

C

$3$

D

$-3$

Solution

(c)

$g=\frac{G M}{R^2}$

$g^{\prime}=\frac{G M}{(0.985 R)^2}$

$g^{\prime}=(1.0306) \frac{G M}{R^2}$

$\Rightarrow g^{\prime}=1.0306 g$

$\Rightarrow$ Acceleration changes by

$\frac{\Delta g}{g} \times 100=+3 \%$

Alternate method:

$g^{\prime}=\frac{G M}{(R+\Delta R)^2}$

$g^{\prime}=G M(R+\Delta R)^{-2}$

$g^{\prime}=\frac{G M}{R^2}\left(1+\frac{\Delta R}{R}\right)^{-2}$

for $\frac{\Delta R}{R} \ll 1$, we can use binomial and approximately,

$g^{\prime}=\frac{G M}{R^2}\left(1-\frac{2 \Delta R}{R}\right)$

$\Rightarrow g^{\prime}=g-g \frac{2 \Delta R}{R}$

$\Rightarrow \frac{\Delta g}{g}=\frac{-2 \Delta R}{R}=-2 \times\left(\frac{-1.5}{100}\right)=\frac{+3}{100}=3 \% \quad\left[g^{\prime}-g=\Delta g\right]$

Standard 11
Physics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.