If the ratio of the sum of $n$ terms of two $A.P.'s$ be $(7n + 1):(4n + 27)$, then the ratio of their ${11^{th}}$ terms will be
$2:3$
$3:4$
$4:3$
$5:6$
If $\left\{a_{i}\right\}_{i=1}^{n}$ where $n$ is an even integer, is an arithmetic progression with common difference $1$ , and $\sum \limits_{ i =1}^{ n } a _{ i }=192, \sum \limits_{ i =1}^{ n / 2} a _{2 i }=120$, then $n$ is equal to
If $a_1, a_2, a_3 …………$ an are in $A.P$ and $a_1 + a_4 + a_7 + …………… + a_{16} = 114$, then $a_1 + a_6 + a_{11} + a_{16}$ is equal to
Let $a , b , c$ be in arithmetic progression. Let the centroid of the triangle with vertices $( a , c ),(2, b)$ and $(a, b)$ be $\left(\frac{10}{3}, \frac{7}{3}\right)$. If $\alpha, \beta$ are the roots of the equation $ax ^{2}+ bx +1=0$, then the value of $\alpha^{2}+\beta^{2}-\alpha \beta$ is ....... .
Find the $17^{\text {th }}$ and $24^{\text {th }}$ term in the following sequence whose $n^{\text {th }}$ term is $a_{n}=4 n-3$
A series whose $n^{th}$ term is $\left( {\frac{n}{x}} \right) + y,$ the sum of $r$ terms will be