If $a,\;b,\;c$ are in $A.P.$, then $\frac{1}{{bc}},\;\frac{1}{{ca}},\;\frac{1}{{ab}}$ will be in

  • A

    $A.P.$

  • B

    $G.P.$

  • C

    $H.P.$

  • D

     None of these

Similar Questions

The solution of the equation $(x + 1) + (x + 4) + (x + 7) + ......... + (x + 28) = 155$ is

The $p^{\text {th }}, q^{\text {th }}$ and $r^{\text {th }}$ terms of an $A.P.$ are $a, b, c,$ respectively. Show that $(q-r) a+(r-p) b+(p-q) c=0$

The sum of all the elements in the set $\{\mathrm{n} \in\{1,2, \ldots \ldots ., 100\} \mid$ $H.C.F.$ of $n$ and $2040$ is $1\,\}$ is equal to $.....$

  • [JEE MAIN 2021]

The sum of numbers from $250$ to $1000$ which are divisible by $3$ is

Between $1$ and $31, m$ numbers have been inserted in such a way that the resulting sequence is an $A. P.$ and the ratio of $7^{\text {th }}$ and $(m-1)^{\text {th }}$ numbers is $5: 9 .$ Find the value of $m$