If $a,\;b,\;c$ are in $A.P.$, then $\frac{1}{{bc}},\;\frac{1}{{ca}},\;\frac{1}{{ab}}$ will be in
$A.P.$
$G.P.$
$H.P.$
None of these
Find the $17^{\text {th }}$ and $24^{\text {th }}$ term in the following sequence whose $n^{\text {th }}$ term is $a_{n}=4 n-3$
Let $a_1, a_2, a_3, \ldots$ be an arithmetic progression with $a_1=7$ and common difference $8$ . Let $T_1, T_2, T_3, \ldots$ be such that $T_1=3$ and $T_{n+1}-T_n=a_n$ for $n \geq 1$. Then, which of the following is/are $TRUE$ ?
$(A)$ $T_{20}=1604$
$(B)$ $\sum_{ k =1}^{20} T_{ k }=10510$
$(C)$ $T_{30}=3454$
$(D)$ $\sum_{ k =1}^{30} T_{ k }=35610$
The ratio of the sums of first $n$ even numbers and $n$ odd numbers will be
Write the first five terms of the sequences whose $n^{t h}$ term is $a_{n}=\frac{n}{n+1}$
Find the $20^{\text {th }}$ term in the following sequence whose $n^{\text {th }}$ term is $a_{n}=\frac{n(n-2)}{n+3}$