If the roots of ${x^2} + x + a = 0$exceed $a$, then

  • A

    $2 < a < 3$

  • B

    $a > 3$

  • C

    $ - 3 < a < 3$

  • D

    $a < - 2$

Similar Questions

Consider the equation $(1+a+b)^2=3\left(1+a^2+b^{2})\right.$ where $a, b$ are real numbers. Then,

  • [KVPY 2016]

If $x$ is real and $k = \frac{{{x^2} - x + 1}}{{{x^2} + x + 1}},$ then

$\alpha$, $\beta$ ,$\gamma$  are roots of equatiuon $x^3 -x -1 = 0$ then equation whose roots are $\frac{1}{{\beta  + \gamma }},\frac{1}{{\gamma  + \alpha }},\frac{1}{{\alpha  + \beta }}$ is

The number of real roots of the polynomial equation $x^4-x^2+2 x-1=0$ is

  • [KVPY 2018]

Let $f: R -\{0\} \rightarrow(-\infty, 1)$ be a polynomial of degree $2$ , satisfying $f( x ) f\left(\frac{1}{ x }\right)=f( x )+f\left(\frac{1}{ x }\right)$. If $f(K)=-2 K$, then the sum of squares of all possible values of $K$ is :

  • [JEE MAIN 2025]