Gujarati
4-2.Quadratic Equations and Inequations
easy

If the roots of ${x^2} + x + a = 0$exceed $a$, then

A

$2 < a < 3$

B

$a > 3$

C

$ - 3 < a < 3$

D

$a < - 2$

Solution

(d) If the roots of the quadratic equation $a{x^2} + bx + c = 0$ exceed a number k, then $a{k^2} + bk + c > 0$ if $a > 0,$ ${b^2} – 4ac \ge 0$ and sum of the roots $ > 2k$

Therefore, if the roots of ${x^2} + x + a = 0$ exceed a number a, then

${a^2} + a + a > 0,1 – 4a \ge 0$ and $ – 1 > 2a$

==> $a(a + 2) > 0,$$a \le \frac{1}{4}$and $a < – \frac{1}{2}$

==> $a > 0\,{\rm{or}}\,a < – 2,a < \frac{1}{4}$and $a < – \frac{1}{2}$

Hence $a < – 2$.

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.