If the roots of ${x^2} + x + a = 0$exceed $a$, then
$2 < a < 3$
$a > 3$
$ - 3 < a < 3$
$a < - 2$
Consider the equation $(1+a+b)^2=3\left(1+a^2+b^{2})\right.$ where $a, b$ are real numbers. Then,
If $x$ is real and $k = \frac{{{x^2} - x + 1}}{{{x^2} + x + 1}},$ then
$\alpha$, $\beta$ ,$\gamma$ are roots of equatiuon $x^3 -x -1 = 0$ then equation whose roots are $\frac{1}{{\beta + \gamma }},\frac{1}{{\gamma + \alpha }},\frac{1}{{\alpha + \beta }}$ is
The number of real roots of the polynomial equation $x^4-x^2+2 x-1=0$ is