If the roots of the equation $x^3 - 9x^2 + \alpha x - 15 = 0 $ are in $A.P.$, then $\alpha$ is
$0$
$20$
$21$
$23$
Five numbers are in $A.P.$, whose sum is $25$ and product is $2520 .$ If one of these five numbers is $-\frac{1}{2},$ then the greatest number amongst them is
Find the $25^{th}$ common term of the following $A.P.'s$
$S_1 = 1, 6, 11, .....$
$S_2 = 3, 7, 11, .....$
Let ${S_n}$ denotes the sum of $n$ terms of an $A.P.$ If ${S_{2n}} = 3{S_n}$, then ratio $\frac{{{S_{3n}}}}{{{S_n}}} = $
If the sum of a certain number of terms of the $A.P.$ $25,22,19, \ldots \ldots .$ is $116$ Find the last term
If $a$ and $b$ are the roots of $x^{2}-3 x+p=0$ and $c, d$ are roots of $x^{2}-12 x+q=0$ where $a, b, c, d$ form a $G.P.$ Prove that $(q+p):(q-p)=17: 15$