Find the sum of all numbers between $200$ and $400$ which are divisible by $7.$
The numbers lying between $200$ and $400 ,$ which are divisible by $7,$ are $203,210,217 \ldots .399$
$\therefore$ First term, $a=203$
Last term, $I=399$
Common difference, $d=7$
Let the number of terms of the $A.P.$ be $n.$
$\therefore a_{n}=399=a+(n-1) d$
$\Rightarrow 399=203+(n-1) 7$
$\Rightarrow 7(n-1)=196$
$\Rightarrow n-1=28$
$\Rightarrow n=29$
$\therefore S_{29}=\frac{29}{2}(203+399)$
$=\frac{29}{2}(602)$
$=(29)(301)$
$=8729$
Thus, the required sum is $8729 .$
If $\tan \,n\theta = \tan m\theta $, then the different values of $\theta $ will be in
If $\frac{{{a^{n + 1}} + {b^{n + 1}}}}{{{a^n} + {b^n}}}$ be the $A.M.$ of $a$ and $b$, then $n=$
The sum of $n$ arithmetic means between $a$ and $b$, is
If $< {a_n} >$ is an $A.P$. and $a_1 + a_4 + a_7 + .......+ a_{16} = 147$, then $a_1 + a_6 + a_{11} + a_{16}$ is equal to
The difference between an integer and its cube is divisible by