Find the sum of all numbers between $200$ and $400$ which are divisible by $7.$

Vedclass pdf generator app on play store
Vedclass iOS app on app store

The numbers lying between $200$ and $400 ,$ which are divisible by $7,$ are $203,210,217 \ldots .399$

$\therefore$ First term, $a=203$

Last term, $I=399$

Common difference, $d=7$

Let the number of terms of the $A.P.$ be $n.$

$\therefore a_{n}=399=a+(n-1) d$

$\Rightarrow 399=203+(n-1) 7$

$\Rightarrow 7(n-1)=196$

$\Rightarrow n-1=28$

$\Rightarrow n=29$

$\therefore S_{29}=\frac{29}{2}(203+399)$

$=\frac{29}{2}(602)$

$=(29)(301)$

$=8729$

Thus, the required sum is $8729 .$

Similar Questions

If ${a_1},\;{a_2},............,{a_n}$ are in $A.P.$ with common difference , $d$, then the sum of the following series is $\sin d(\cos {\rm{ec}}\,{a_1}.co{\rm{sec}}\,{a_2} + {\rm{cosec}}\,{a_2}.{\rm{cosec}}\,{a_3} + ...........$$ + {\rm{cosec}}\;{a_{n - 1}}{\rm{cosec}}\;{a_n})$

The sum of the first $20$ terms common between the series $3 +7 + 1 1 + 15+ ... ......$ and $1 +6+ 11 + 16+ ......$, is

  • [JEE MAIN 2014]

The ratio of the sums of $m$ and $n$ terms of an $A.P.$ is $m^{2}: n^{2} .$ Show that the ratio of $m^{ th }$ and $n^{ th }$ term is $(2 m-1):(2 n-1)$

If ${a^2},\,{b^2},\,{c^2}$ be in $A.P.$, then $\frac{a}{{b + c}},\,\frac{b}{{c + a}},\,\frac{c}{{a + b}}$ will be in

Let the digits $a, b, c$ be in $A.P.$ Nine-digit numbers are to be formed using each of these three digits thrice such that three consecutive digits are in $A.P.$ at least once. How many such numbers can be formed?

  • [JEE MAIN 2023]