8. Sequences and Series
hard

Let $a , b , c$ be in arithmetic progression. Let the centroid of the triangle with vertices $( a , c ),(2, b)$ and $(a, b)$ be $\left(\frac{10}{3}, \frac{7}{3}\right)$. If $\alpha, \beta$ are the roots of the equation $ax ^{2}+ bx +1=0$, then the value of $\alpha^{2}+\beta^{2}-\alpha \beta$ is ....... .

A

$\frac{71}{256}$

B

$\frac{69}{256}$

C

$-\frac{69}{256}$

D

$-\frac{71}{256}$

(JEE MAIN-2021)

Solution

$\frac{a+2+a}{3}=\frac{10}{3}$

$a=4$

and $\frac{c+b+b}{3}=\frac{7}{3}$

$c+2 b=7$

also $2 b=a+c$

$2 b-a+2 b=7$

$b=\frac{11}{4}$

now $4 x ^{2}+\frac{11}{4} x +1=0 (0=\alpha \,And \, \beta)$

$\alpha^{2}+\beta^{2}-\alpha \beta=(\alpha+\beta)^{2}-3 \alpha \beta$

$=\left(\frac{-11}{16}\right)^{2}-3\left(\frac{1}{4}\right)$

$=\frac{121}{256}-\frac{3}{4}=\frac{-71}{256}$

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.