यदि समीकरण $\log _{\cos x} \cot x+4 \log _{\sin x} \tan x=1, x \in\left(0, \frac{\pi}{2}\right)$ का हल $\sin ^{-1}\left(\frac{\alpha+\sqrt{\beta}}{2}\right)$ हैं, जहाँ, $\alpha, \beta$ पूर्णांक है, तो $\alpha+\beta$ बराबर है :
$3$
$5$
$6$
$4$
यदि $\sin 2\theta = \cos 3\theta $ व $\theta $ एक न्यूनकोण है, तो $\sin \theta $ का मान है
यदि ${\sin ^2}\theta - 2\cos \theta + \frac{1}{4} = 0,$ तो $\theta $ का व्यापक मान है
यदि $\tan (\pi \cos \theta ) = \cot (\pi \sin \theta ),$ तब $\cos \left( {\theta - \frac{\pi }{4}} \right) =$
समीकरण ${\cos ^2}\theta + \sin \theta = 1$ का हल किस अन्तराल में स्थित है
$\sin 7\theta = \sin 4\theta - \sin \theta $ तथा $0 < \theta < \frac{\pi }{2}$ को सन्तुष्ट करने वाले $\theta $ के मान हैं