The solution of the equation ${\cos ^2}x - 2\cos x = $ $4\sin x - \sin 2x,$ $\,(0 \le x \le \pi )$ is
$\pi - {\cot ^{ - 1}}\left( {\frac{1}{2}} \right)$
$\pi - {\tan ^{ - 1}}(2)$
$\pi + {\tan ^{ - 1}}\left( { - \frac{1}{2}} \right)$
None of these
If the sum of solutions of the system of equations $2 \sin ^{2} \theta-\cos 2 \theta=0$ and $2 \cos ^{2} \theta+3 \sin \theta=0$ in the interval $[0,2 \pi]$ is $k \pi$, then $k$ is equal to.
Solve $\cos x=\frac{1}{2}$
The general solution of $a\cos x + b\sin x = c,$ where $a,\,\,b,\,\,c$ are constants
The solution of equation ${\cos ^2}\theta + \sin \theta + 1 = 0$ lies in the interval
If the solution for $\theta $ of $\cos p\theta + \cos q\theta = 0,\;p > 0,\;q > 0$ are in $A.P.$, then the numerically smallest common difference of $A.P.$ is