एक अनंन्त $GPa , ar , a r ^{2}, a r ^{3}, \ldots$ का योग 15 है तथा इसके प्रत्येक पद का वर्ग करने का योग 150 है, तो $a r^{2}, a r^{4}, a r^{6}, \ldots$ का योग है।
$\frac{5}{2}$
$\frac{1}{2}$
$\frac{25}{2}$
$\frac{9}{2}$
एक गुणोत्तर श्रेणी का प्रथम पद $a=729$ तथा $7$ वाँ पद $64$ है तो $S _{7}$ ज्ञात कीजिए ?
यदि $x > 1,\;y > 1,{\rm{ }}z > 1$ गुणोत्तर श्रेणी में ($G.P$) हों, तो $\frac{1}{{1 + {\rm{In}}\,x}},\;\frac{1}{{1 + {\rm{In}}\,y}},$ $\;\frac{1}{{1 + {\rm{In}}\,z}}$ होंगे
किसी गुणोत्तर श्रेणी का $6$ वाँ पद $32$ तथा $8$ वाँ पद $128$ है, तो श्रेणी का सार्वानुपात होगा
गुणोत्तर श्रेणी के कुछ पदों का योग $315$ है, उसका प्रथम पद तथा सार्व अनुपात क्रमशः $5$ तथा $2$ हैं। अंतिम पद तथा पदों की संख्या ज्ञात कीजिए।
धन पदों की एक अनन्त श्रेणी का योग $3$ है तथा इसके पदों के घनों (cubes) का योग $\frac{27}{19}$ है, तो इस श्रेणी का सार्व अनुपात है