Gujarati
8. Sequences and Series
easy

एक अनुक्रम $ < {a_n} > \;$ के लिये ${a_1} = 2$ तथा $\frac{{{a_{n + 1}}}}{{{a_n}}} = \frac{1}{3}$, तब $\sum\limits_{r = 1}^{20} {{a_r}} $ है

A

$\frac{{20}}{2}[4 + 19 \times 3]$

B

$3\left( {1 - \frac{1}{{{3^{20}}}}} \right)$

C

$2(1 - {3^{20}})$

D

इनमें से कोई नहीं

Solution

(b) अनुक्रम एक गुणोत्तर श्रेणी है, जिसका सार्वअनुपात $\frac{1}{3}$है।

अत: $\frac{{a(1 – {r^n})}}{{1 – r}}$= $\frac{{2\,[1 – {{(1/3)}^{20}}]}}{{1 – (1/3)}}$ = $3\,\left[ {1 – \frac{1}{{{3^{20}}}}} \right]$.

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.