माना समीकरण $p x^2+q x-r=0, p \neq 0$ के मूल $\mathrm{p}, \mathrm{q}$ तथा $\mathrm{r}$ एक परिवर्तनीय (non-constant) $G.P.$ के क्रमागत पद हैं तथा $\frac{1}{\alpha}+\frac{1}{\beta}=\frac{3}{4}$ है, तो $(\alpha-\beta)^2$ का मान है :
$\frac{80}{9}$
$9$
$\frac{20}{3}$
$8$
यदि $y - x$ तथा $y - z$ के बीच का हरात्मक माध्य $2(y - a)$ है, तब $x - a,\;y - a,\;z - a$ हैं
यदि $\frac{{x + y}}{2},\;y,\;\frac{{y + z}}{2}$ हरात्मक श्रेणी में हों, तो $x,\;y,\;z$ होंगे
मान लीजिए कि त्रिभुज $A B C$ की भुजाएँ $a, b, c$ हैं, एवं वह $b^2=a c$ को संतुष्ट करती हैं। तब $\frac{\sin A \cot C+\cos A}{\sin B \cot C+\cos B}$ के सभी संभावित मानों का समुच्चय क्या होगा ?
यदि $x > 1,\;y > 1,{\rm{ }}z > 1$ गुणोत्तर श्रेणी में ($G.P$) हों, तो $\frac{1}{{1 + {\rm{In}}\,x}},\;\frac{1}{{1 + {\rm{In}}\,y}},$ $\;\frac{1}{{1 + {\rm{In}}\,z}}$ होंगे
यदि $a _1( >0), a _2, a _3, a _4, a _5$ गुणोत्तर श्रेणी में हो, $a _2+ a _4=2 a _3+1$ तथा $3 a _2+ a _3=2 a _4$ है, तो $a _2+ a _4+2 a _5$ का मान होगा-