જો કોઈ સમાંતર શ્રેણીના પ્રથમ $n$ પદોનો સરવાળો $cn(n -1)$ , જ્યાં $c \neq 0$ , હોય તો આ પદોના વર્ગોનો સરવાળો મેળવો 

  • A

    $c^2n^2(n+1)^2$

  • B

    $\frac{2}{3}c^2n(n-1)(2n-1)$

  • C

    $\frac{2}{3}c^2n(n+1)(2n+1)$

  • D

    $\frac{c^2 n^2}{3}(n+1)^2$

Similar Questions

જો $^n{C_4},{\,^n}{C_5},$ અને ${\,^n}{C_6},$ એ સમાંતર શ્રેણીમાં હોય તો $n$ મેળવો.

  • [JEE MAIN 2019]

સમાંતર શ્રેણીના પદો ${{\text{a}}_{\text{1}}}\text{, }{{\text{a}}_{\text{2}}}\text{, }{{\text{a}}_{\text{3}}}\text{, }......\text{ }$ લો. જો $\frac{{{a}_{1}}\,+\,\,{{a}_{2}}\,+\,....\,+\,\,{{a}_{p}}}{{{a}_{1}}\,+\,\,{{a}_{2}}\,+\,....\,+\,\,{{a}_{q}}}$  $=\,\frac{{{p}^{2}}}{{{q}^{2}}},\,p\,\,\ne \,\,q$ હોય,તો $\,\frac{{{a}_{6}}}{{{a}_{21}}}\,\,=\,\,.......$

ધારો કે $3, 6. 9, 12,$ .. $(78$ પદો સુધી) અને $5, 9, 13,$ $17, \ldots(59$ પદો સુધી) બે શ્રેણીઓ છે.,તો બંને શ્રેણીઓનાં સામાન્ય પદોનો સરવાળો $\dots\dots$છે.

  • [JEE MAIN 2022]

અલગ અલગ સમાંતર શ્રેણી કે જેનું પ્રથમ પદ  $100$ અને અંતિમ પદ $199$ છે અને સમાન્ય તફાવત પૂર્ણાંક છે. જો આવી સમાંતર શ્રેણીના બધાજ સામાન્ય તફાવતનો સરવાળો મેળવો કે જેમાં ઓછામાં ઓછા $3$ પદો હોય અને વધુમાં વધુ $33$ પદો હોય.

  • [JEE MAIN 2022]

એક ધન પૂર્ણાંક અંકોની સમાંતર શ્રેણી ધ્યાનમાં લ્યો. જેનાં પ્રથમ ત્રણ પદોનો સરવાળો $54$ છે અને પ્રથમ વીસ પદોનો સરવાળો $1600$ અને $1800$ ની વચ્ચે છે તો શ્રેણીનું $11^{\text {th }}$ મુ પદ મેળવો.

  • [JEE MAIN 2025]