8. Sequences and Series
normal

જો કોઈ સમાંતર શ્રેણીના પ્રથમ $n$ પદોનો સરવાળો $cn(n -1)$ , જ્યાં $c \neq 0$ , હોય તો આ પદોના વર્ગોનો સરવાળો મેળવો 

A

$c^2n^2(n+1)^2$

B

$\frac{2}{3}c^2n(n-1)(2n-1)$

C

$\frac{2}{3}c^2n(n+1)(2n+1)$

D

$\frac{c^2 n^2}{3}(n+1)^2$

Solution

$\mathrm{S}_{\mathrm{n}}=\mathrm{cn}(\mathrm{n}-1)$

$S_{n-1}=c(n-1)(n-2)$

$t_{n}=S_{n}-S_{n}=c(n-1)(n-(n-2))=2 c(n-1)$

So, for the new series

$\mathrm{T}_{\mathrm{n}}=4 \mathrm{c}^{2}(\mathrm{n}-1)^{2}=4 \mathrm{c}^{2}\left[\mathrm{n}^{2}-2 \mathrm{n}+1\right]$

So,${S_n}$  for the new series will give

${S_n} = 4{c^2}\left[ {\sum {{n^2} – 2\sum {n + n} } } \right] = \frac{2}{3}{c^2}n(n – 1)(2n – 1)$

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.