यदि $( x + y )^{ n }$ के प्रसार में गुणांकों का योगफल $4096$ है, तब प्रसार में महत्तम गुणांक है ....... |
$111$
$222$
$924$
$347$
$^{10}{C_1}{ + ^{10}}{C_3}{ + ^{10}}{C_5}{ + ^{10}}{C_7}{ + ^{10}}{C_9} = $
$(1+x)^{101}\left(1+x^{2}-x\right)^{100}$ के $x$ की घातों में प्रसार में पदों की संख्या है
यदि ${(1 - 3x + 10{x^2})^n}$ के विस्तार में गुणांकों का योग $a$ तथा ${(1 + {x^2})^n}$ के विस्तार में गुणांकों का योग $b$ हो, तो
यदि $\left(1-\frac{2}{x}+\frac{4}{x^{2}}\right)^{n}, x \neq 0$ के प्रसार में पदों की संख्या $28$ है, तो इस प्रसार में आने वाले सभी पदों के गुणांकों का योग है:
यदि $\sum_{ k =1}^{31}\left({ }^{31} C _{ k }\right)\left({ }^{31} C _{ k -1}\right)-\sum_{ k =1}^{30}\left({ }^{30} C _{ k }\right)\left({ }^{30} C _{ k -1}\right)=\frac{\alpha(60 !)}{(30 !)(31 !)}$ जहाँ $\alpha \in R$, तब $16 \alpha$ का मान होगा ?