જો $\left(2 x^{3}+\frac{3}{x}\right)^{10}$ નાં દ્વિપદી વિસ્તરણમાં $x$ નાં ધન બેકી ધાતવાળા પદોમાંના સહગુણકોનો સરવાળો $5^{10}-\beta \cdot 3^{9}$ હોય. તો $\beta$ = ................
$36$
$75$
$89$
$83$
જો $\frac{{ }^{11} C_1}{2}+\frac{{ }^{11} C_2}{3}+\ldots . .+\frac{{ }^{11} C_9}{10}=\frac{n}{m}$ જ્યાં ગુ. સા. અ. $\operatorname(n, m)=1$,હોય,તો $n+m$ .....................
જો ${C_r}$ એ $^n{C_r}$ દર્શાવે છે તો , $\frac{{2(n/2)!(n/2)!}}{{n!}}[C_0^2 - 2C_1^2 + 3C_2^2 - ..... + {( - 1)^n}(n + 1)C_n^2]$ મેળવો. (કે જ્યાં $n$ એ યુગ્મ પુર્ણાક છે )
$\left( \begin{array}{l}30\\0\end{array} \right)\,\left( \begin{array}{l}30\\10\end{array} \right) - \left( \begin{array}{l}30\\1\end{array} \right)\,\left( \begin{array}{l}30\\11\end{array} \right)$ + $\left( \begin{array}{l}30\\2\end{array} \right)\,\left( \begin{array}{l}30\\12\end{array} \right) + ....... + \left( \begin{array}{l}30\\20\end{array} \right)\,\left( \begin{array}{l}30\\30\end{array} \right) = .$ . ..
શ્રેણી $^{100}{C_1}\,{2^8}.\,{\left( {1\, - \,x} \right)^{99}}\, + {\,^{100}}{C_2}\,{2^7}.\,{\left( {1\, - \,x} \right)^{98}}\, + {\,^{100}}{C_3}\,{2^6}.\,{\left( {1\, - \,x} \right)^{97}}\, + \,....\, + {\,^{100}}{C_9}\,{\left( {1\, - \,x} \right)^{91}}$ માં $x^{91}$ નો સહગુનક મેળવો
${(1 + x)^{50}}$ ના વિસ્તરણમાં $x$ ની અયુગ્મ ઘાતાંકના સહગુણકનો સરવાળો મેળવો.