If the sum of the distances of a point from two perpendicular lines in a plane is $1$, then its locus is

  • [IIT 1992]
  • A

    Square

  • B

    Circle

  • C

    Straight line

  • D

    Two intersecting lines

Similar Questions

The four points whose co-ordinates are $(2, 1), (1, 4), (4, 5), (5, 2)$ form :

Consider a triangle $\mathrm{ABC}$ having the vertices $\mathrm{A}(1,2), \mathrm{B}(\alpha, \beta)$ and $\mathrm{C}(\gamma, \delta)$ and angles $\angle \mathrm{ABC}=\frac{\pi}{6}$ and $\angle \mathrm{BAC}=\frac{2 \pi}{3}$. If the points $\mathrm{B}$ and $\mathrm{C}$ lie on the line $\mathrm{y}=\mathrm{x}+4$, then $\alpha^2+\gamma^2$ is equal to....................

  • [JEE MAIN 2024]

Locus of the image of point $ (2,3)$ in the line $\left( {2x - 3y + 4} \right) + k\left( {x - 2y + 3} \right) = 0,k \in R$ is  a:

  • [JEE MAIN 2015]

Given three points $P, Q, R$ with $P(5, 3)$ and $R$ lies on the $x-$ axis. If equation of $RQ$ is $x -2y = 2$ and $PQ$ is parallel to the $x-$ axis, then the centroid of $\Delta PQR$ lies on the line

The line $2x + 3y = 12$ meets the $x -$ axis at $A$ and the $y -$ axis at $B$ . The line through $(5, 5)$ perpendicular to $AB$ meets the $x -$ axis, $y -$ axis $\&$ the line $AB$ at $C, D, E$ respectively. If $O$ is the origin, then the area of the $OCEB$ is :