श्रेणी $1 + \frac{2}{x} + \frac{4}{{{x^2}}} + \frac{8}{{{x^3}}} + ....\infty $ का योग एक नियत संख्या है, तब
$x > 2$
$x > - 2$
$x > \frac{1}{2}$
इनमें से कोई नहीं
माना $a_{1}, a_{2}, a_{3}, \ldots$ गुणोत्तर श्रेणी इस प्रकार है कि $a_{1}<0, a_{1}+a_{2}=4$ तथा $a_{3}+a_{4}=16$. यदि $\sum_{i=1}^{9} a_{i}=4 \lambda$ है, तो $\lambda$ बराबर है
यदि $x$ और $y$ के बीच गुणोत्तर माध्य $G$ है, तो $\frac{1}{{{G^2} - {x^2}}} + \frac{1}{{{G^2} - {y^2}}}$ का मान है
एक अनंन्त $GPa , ar , a r ^{2}, a r ^{3}, \ldots$ का योग 15 है तथा इसके प्रत्येक पद का वर्ग करने का योग 150 है, तो $a r^{2}, a r^{4}, a r^{6}, \ldots$ का योग है।
माना $a _1, a _2, a _3, \ldots$. धनात्मक पूर्णांकों का एक अनुक्रम समान्तर श्रेढ़ी में है जिसका सार्वअन्तर $2$ है। माना $b _1, b _2$, $b _3, \ldots$ धनात्मक पूर्णांकों का एक अनुक्रम गुणोत्तर श्रेढ़ी में है जिसका सार्वअनुपात $2$ है। यदि $a _1= b _1=c$ हो, तो $c$ के सभी संभव मानों की संख्या, जिसके लिये किसी भी धनात्मक पूर्णांक $n$ के लिये समिका
$2\left( a _1+ a _2+\ldots+ a _{ n }\right)= b _1+ b _2+\ldots . .+ b _{ n }$
सत्य हो, होगी
एक गुणोत्तर श्रेढ़ी में यदि पहले $5$ पदों के योग का उनके व्युत्क्रमों के योग से अनुपात $49$ है तथा इसके पहले तथा तीसरे पदों का योग $35$ है, तो इस गुणोत्तर श्रेढ़ी का प्रथम पद है