दिखाइए कि एक गुणोत्तर श्रेणी के प्रथम $n$ पदों के योगफल तथा $(n+1)$ वें पद से $(2 n)$ वें पद
तक के पदों के योगफल का अनुपात $\frac{1}{r^{n}}$ है।
Let $a$ be the first term and $r$ be the common ratio of the $G.P.$
Sum of first $n$ terms $=\frac{a\left(1-r^{n}\right)}{(1-r)}$
Since there are $n$ terms from $(n+1)^{\text {th }}$ to $(2 n)^{\text {th }}$ term,
Sum of terms from $(n+1)^{t h}$ to $(2 n)^{th}$ term
$S_{n}=\frac{a_{n+1}\left(1-r^{n}\right)}{1-r}$
$a^{n+1}=a r^{n+1-1}=a r^{n}$
Thus, required ratio $=\frac{a\left(1-r^{n}\right)}{(1-r)} \times \frac{(1-r)}{a r^{n}\left(1-r^{n}\right)}=\frac{1}{r^{n}}$
Thus, the ratio of the sum of first $n$ terms of a $G.P.$ to the sum of terms from term is $\frac{1}{r^{n}}$
एक अनन्त गुणोत्तर श्रेणी का योग $\frac{4}{3}$ तथा प्रथम पद $\frac{3}{4}$ है तब सार्व-अनुपात है
$4$ और $\frac{1}{4}$ के बीच तीन गुणोत्तर माध्यों का गुणनफल होगा
एक अनंत गुणोत्तर श्रेणी, जिसका प्रथम पद $a$ तथा सार्वानुपात $r$ है, का योग $4$ तथा द्वितीय पद $3/4$ है, तब
$1 + \cos \alpha + {\cos ^2}\alpha + .......\,\infty = 2 - \sqrt {2,} $ तब $\alpha $ $(0 < \alpha < \pi )$ का मान होगा
गुणोत्तर श्रेणी $5,25,125 \ldots$ का $10$ वाँ तथा $n$ वाँ पद ज्ञात कीजिए ?