If the sum of three numbers of a arithmetic sequence is $15$ and the sum of their squares is $83$, then the numbers are
$4, 5, 6$
$3, 5, 7$
$1, 5, 9$
$2, 5, 8$
Let ${a_1},{a_2},{a_3}, \ldots $ be terms of $A.P.$ If $\frac{{{a_1} + {a_2} + \ldots + {a_p}}}{{{a_1} + {a_2} + \ldots + {a_q}}} = \frac{{{p^2}}}{{{q^2}}},p \ne q$ then $\frac{{{a_6}}}{{{a_{21}}}}$ equals
Let ${T_r}$ be the ${r^{th}}$ term of an $A.P.$ for $r = 1,\;2,\;3,....$. If for some positive integers $m,\;n$ we have ${T_m} = \frac{1}{n}$ and ${T_n} = \frac{1}{m}$, then ${T_{mn}}$ equals
If $a _{1}, a _{2}, a _{3} \ldots$ and $b _{1}, b _{2}, b _{3} \ldots$ are $A.P.$ and $a_{1}=2, a_{10}=3, a_{1} b_{1}=1=a_{10} b_{10}$ then $a_{4} b_{4}$ is equal to
If $A$ be an arithmetic mean between two numbers and $S$ be the sum of $n$ arithmetic means between the same numbers, then
If $\log _{10} 2, \log _{10} (2^x + 1), \log _{10} (2^x + 3)$ are in $A.P.,$ then :-