यदि किसी गुणोत्तर श्रेणी के तीन पदों का योग $19$ एवं गुणनफल $216$ हो, तो श्रेणी का सार्व-अनुपात होगा
$ - \frac{3}{2}$
$\frac{3}{2}$
$2$
$3$
यदि $a, b, c$ तथा $d$ गुणोत्तर श्रेणी में हैं तो दिखाइए कि $\left(a^{2}+b^{2}+c^{2}\right)\left(b^{2}+c^{2}+d^{2}\right)=$ $(a b+b c+c d)^{2}$
$2.\mathop {357}\limits^{ \bullet \,\, \bullet \,\, \bullet } = $
यदि $x,\;y,\;z$ गुणोत्तर श्रेणी में हों व ${a^x} = {b^y} = {c^z}$, तो
$0<\mathrm{c}<\mathrm{b}<\mathrm{a}$ के लिए माना $(\mathrm{a}+\mathrm{b}-2 \mathrm{c}) \mathrm{x}^2+(\mathrm{b}+\mathrm{c}-2 \mathrm{a}) \mathrm{x}+(\mathrm{c}+\mathrm{a}-2 \mathrm{~b})=0$ का एक मूल $\alpha \neq 1$ है। तो दो कथनों में
($I$) यदि $\alpha \in(-1,0)$ है, तो $a$ तथा $c$ का गुणोत्तर माध्य $b$ नहीं हो सकता।
($II$) यदि $\alpha \in(0,1)$ है, तो $\mathrm{a}$ तथा $\mathrm{c}$ का गुणोत्तर माध्य $\mathrm{b}$ हो सकता है।
$1 + \cos \alpha + {\cos ^2}\alpha + .......\,\infty = 2 - \sqrt {2,} $ तब $\alpha $ $(0 < \alpha < \pi )$ का मान होगा