$\lambda =$ ........ કિમત માટે સમીકરણની સંહતિ $x + y + z = 6,x + 2y + 3z = 10,$ $x + 2y + \lambda z = 12$ સુસંગત નથી.
$1$
$2$
$-2$
$3$
જો ${A_\lambda } = \left( {\begin{array}{*{20}{c}}
\lambda &{\lambda - 1}\\
{\lambda - 1}&\lambda
\end{array}} \right);\,\lambda \in N$ હોય તો $|A_1| + |A_2| + ..... + |A_{300}|$ મેળવો.
સમીકરણ $\left| {\,\begin{array}{*{20}{c}}a&a&x\\m&m&m\\b&x&b\end{array}\,} \right| = 0$ ના બીજ મેળવો.
જો સમીકરણ સંહતી $\alpha x+y+z=5, x+2 y+$ $3 z=4, x+3 y+5 z=\beta$ને અસંખ્ય ઉકેલો હોય તો,ક્રમયુક્ત જોડ $(\alpha, \beta)=\dots\dots\dots\dots$
જો સમીકરણ સંહિતા
$x-2 y+3 z=9$
$2 x+y+z=b$
$x-7 y+a z=24$
ને અનંત ઉકેલો હોય તો $a - b$ ની કિમત મેળવો
જો $a_1,a_2,a_3,....,a_{10}$ એ સમગુણોતર શ્રેણીમાં છે કે જ્યાં $i = 1, 2,....,10$ માટે $a_i > 0$ છે અને $S$ એ $(r,k), r, k \in N$ ની જોડ પરનો ગણછે જેથી
$\left| {\begin{array}{*{20}{c}} {{{\log }_e}\,a_1^ra_2^k}&{{{\log }_e}\,a_2^ra_3^k}&{{{\log }_e}\,a_3^ra_4^k} \\ {{{\log }_e}\,a_4^ra_5^k}&{{{\log }_e}\,a_5^ra_6^k}&{{{\log }_e}\,a_6^ra_7^k} \\ {{{\log }_e}\,a_7^ra_8^k}&{{{\log }_e}\,a_8^ra_9^k}&{{{\log }_e}\,a_9^ra_{10}^k}\end{array}} \right| = 0 $
તો ગણ $S$ માં રહેલા ઘટકોની સંખ્યા મેળવો.