જો સુરેખ સમીકરણ સંહતિ  $2 x + y - z =7$ ; $x-3 y+2 z=1$ ; $x +4 y +\delta z = k$, જ્યાં $\delta, k \in R$ ને અસંખ્ય ઉકેલો હોય,તો  $\delta+ k=\dots\dots\dots$

  • [JEE MAIN 2022]
  • A

    $-3$

  • B

    $3$

  • C

    $6$

  • D

    $9$

Similar Questions

સુરેખ સમીકરણોની સંહતિ $x+2 y+3 z=1$ ; $3 x+4 y+5 z=\mu$ ; $4 x+4 y+4 z=\delta$ એ સુસંગત ન હોય તો $(\mu, \delta)$ ની કર્મયુક્ત જોડ મેળવો.

  • [JEE MAIN 2020]

સુરેખ સમીકરણ સંહિતા 

$(\lambda-1) x+(3 \lambda+1) y+2 \lambda z=0$

$(\lambda-1) x+(4 \lambda-2) y+(\lambda+3) z=0$

$2 x+(3 \lambda+1) y+3(\lambda-1) z=0$

ને શુન્યેતર ઉકેલો હોય તો $\lambda$ ની બધી ભિન્ન કિમતોનો સરવાળો શોધો 

  • [JEE MAIN 2020]

જો $a, b, c$ એ ત્રણ સંકર સંખ્યા છે કે જેથી $a^2 + b^2 + c^2 = 0$ અને  $\left| {\begin{array}{*{20}{c}}
{\left( {{b^2} + {c^2}} \right)}&{ab}&{ac}\\
{ab}&{\left( {{c^2} + {a^2}} \right)}&{bc}\\
{ac}&{bc}&{\left( {{a^2} + {b^2}} \right)}
\end{array}} \right| = K{a^2}{b^2}{c^2}$ તો $K$ ની કિમંત મેળવો.

ધારો કે $a ,b ,c $ માટે $b + c \ne 0$ . જો $\left| {\begin{array}{*{20}{c}}a&{a + 1}&{a - 1}\\{ - b}&{b + 1}&{b - 1}\\c&{c - 1}&{c + 1}\end{array}} \right| + \left| {\begin{array}{*{20}{c}}{a + 1}&{b + 1}&{c - 1}\\{a - 1}&{b - 1}&{c + 1}\\{{{\left( { - 1} \right)}^{n + 2}} \bullet a}&{{{\left( { - 1} \right)}^{n + 1}} \bullet b}&{{{\left( { - 1} \right)}^n} \bullet c}\end{array}} \right| = 0$ તો $n$ મેળવો.

  • [AIEEE 2009]

$x$ નું મૂલ્ય શોધો : $\left|\begin{array}{ll}2 & 4 \\ 5 & 1\end{array}\right|=\left|\begin{array}{cc}2 x & 4 \\ 6 & x\end{array}\right|$