यदि रैखिक समीकरण निकाय $x + y + z =5$, $x +2 y +2 z =6$, $x +3 y +\lambda z =\mu,(\lambda, \mu \in R )$ के अनन्त हल है, तो $\lambda+\mu$ का मान है

  • [JEE MAIN 2019]
  • A

    $12$

  • B

    $7$

  • C

    $10$

  • D

    $9$

Similar Questions

माना रैखिक समीकरण निकाय $4 x +\lambda y +2 z =0$ ; $2 x - y + z =0$ ; $\mu x +2 y +3 z =0, \lambda, \mu \in R$ का एक अतुच्छ हल है। तो निम्न में से कौन सा सत्य है ?

  • [JEE MAIN 2021]

$\lambda$ तथा $\mu$ के क्रमश: मान, जिनके लिए समीकरण निकाय $x+y+z=2$, $x+2 y+3 z=5$, $x+3 y+\lambda z=\mu$ के असंख्य हल हैं

  • [JEE MAIN 2020]

गुणनफल $x y z$ का वह न्यूनतम मूल्य जिसके लिए सारणिक$\left|\begin{array}{lll} x & 1 & 1 \\ 1 & y & 1 \\ 1 & 1 & z \end{array}\right|$ ॠणेतर है

  • [JEE MAIN 2015]

समीकरण $\left| {\,\begin{array}{*{20}{c}}{x - 1}&1&1\\1&{x - 1}&1\\1&1&{x - 1}\end{array}\,} \right| = 0$ के मूल हैं

$\lambda $ के ........... मान के लिये निकाय $x + y + z = 6,$ $x + 2y + 3z = 10,$ $x + 2y + \lambda z = 12$ के असंगत हल होंगे

  • [AIEEE 2002]