यदि वृत्त ${x^2} + {y^2} = {r^2}$ के बिन्दु $(a, b)$ पर खींची गयी स्पर्श रेखा निर्देशांक अक्षों को बिन्दुओं $A$ तथा $B$ पर मिलती हो और $O$ मूल बिन्दु हो तो त्रिभुज $OAB$ का क्षेत्रफल होगा

  • A

    $\frac{{{r^4}}}{{2ab}}$

  • B

    $\frac{{{r^4}}}{{ab}}$

  • C

    $\frac{{{r^2}}}{{2ab}}$

  • D

    $\frac{{{r^2}}}{{ab}}$

Similar Questions

यदि एक रेखा $y = mx + c$ वृत्त $( x -3)^{2}+ y ^{2}=1$ की एक स्पर्श रेखा है तथा यह एक रेखा $L_{1}$ पर लम्ब है, जहाँ $L_{1}$ वृत्त $x ^{2}+ y ^{2}=1$ के बिन्दु $\left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right)$ पर स्पर्श रेखा है, तो

  • [JEE MAIN 2020]

एक बिंदु $P$ से वत्त $x ^{2}+ y ^{2}-2 x -4 y +4=0$ पर दो स्पर्श रेखाएँ खींची गई हैं। इन स्पर्श रेखाओं के बीच का कोण $\tan ^{-1}\left(\frac{12}{5}\right)$ है, जहाँ $\tan ^{-1}\left(\frac{12}{5}\right) \in$ $(0, \pi)$ है। यदि वत्त का केन्द्र $C$ है तथा ये स्पर्श रेखाएँ वत्त को बिंदुओं $A$ तथा $B$ पर स्पर्श करती है, तो $\triangle PAB$ तथा $\triangle CAB$ के क्षेत्रफलों का अनुपात है

  • [JEE MAIN 2021]

वृत्त ${x^2} + {y^2} = 169$ के बिन्दुओं $(5, 12)$ तथा $(12, -5)$ पर स्पर्श रेखाओं के बीच का कोण ............. $^o$ है

रेखा $lx + my + n = 0$, वृत्त ${x^2} + {y^2} = {a^2}$ की एक स्पर्श रेखा होगी यदि

माना कि बिन्दु $B$ रेखा $8 x -6 y -23=0$ के सापेक्ष बिन्दु $A (2,3)$ का प्रतिबिम्ब (reflection) है। माना कि $\Gamma_A$ और $\Gamma_{ B }$ क्रमश: त्रिज्याएँ $2$ और $1$ वाले वृत्त हैं, जिनके केन्द्र क्रमश: $A$ और $B$ हैं। माना कि वृत्तों $\Gamma_{ A }$ और $\Gamma_{ B }$ की एक ऐसी उभयनिष्ठ स्पर्श (common tangent) रेखा $T$ हैं, दोनों वृत्त जिसके एक ही तरफ हैं। यदि $C$, बिन्दुओं $A$ और $B$ से जाने वाली रेखा और $T$ का प्रतिच्छेद बिन्दु है, तब रेखाखण्ड (line segment) $AC$ की लम्बाई है . . . . .

  • [IIT 2019]