7.Binomial Theorem
medium

If the term independent of $x$ in the expansion of $\left(\sqrt{\mathrm{ax}}{ }^2+\frac{1}{2 \mathrm{x}^3}\right)^{10}$ is 105 , then $\mathrm{a}^2$ is equal to :

A

$4$

B

$9$

C

$6$

D

$2$

(JEE MAIN-2024)

Solution

$ \left(\sqrt{\mathrm{a}} \mathrm{x}^2+\frac{1}{2 \mathrm{x}^3}\right)^{10} $

$ \text { General term }={ }^{10} \mathrm{C}_{\mathrm{r}}(\sqrt{\mathrm{ax}})^{10-\mathrm{r}}\left(\frac{1}{2 \mathrm{x}^3}\right)^{\mathrm{r}} $

$ 20-2 \mathrm{r}-3 \mathrm{r}=0 $

$ \mathrm{r}=4 $

$ { }^{10} \mathrm{C}_4 \mathrm{a}^3 \cdot \frac{1}{16}=105 $

$ \mathrm{a}^3=8 $

$ \mathrm{a}^2=4$

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.