7.Binomial Theorem
hard

If the term without $x$ in the expansion of $\left( x ^{\frac{2}{3}}+\frac{\alpha}{ x ^3}\right)^{22}$ is $7315$ , then $|\alpha|$ is equal to $...........$.

A

$2$

B

$1$

C

$4$

D

$6$

(JEE MAIN-2023)

Solution

$T _{ r +1}={ }^{22} C _{ r } \cdot\left( x ^{\frac{2}{3}}\right)^{22- r } \cdot(\alpha)^{ r }, x ^{-3 r }$

$={ }^{22} C _{ r } \cdot x ^{\frac{44}{3}-\frac{2 r }{3}-3 r }(\alpha)^{ r }$

$\frac{44}{3}=\frac{11 r }{3}$

$r =4$

${ }^{22} C _4 \cdot \alpha^4=7315$

$\frac{22 \times 21 \times 20 \times 19}{24} \cdot \alpha^4=7315$

$\alpha=1$

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.