यदि किसी गुणोत्तर श्रेणी का तीसरा पद $4$ हो, तो इसके प्रथम $5$ पदों का गुणनफल होगा
${4^3}$
${4^4}$
${4^5}$
इनमें से कोई नहीं
यदि किसी धनात्मक गुणोत्तर श्रेणी का प्रत्येक पद अपने पूर्व के दो पदों के योग के बराबर है, तो श्रेणी का सार्व-अनुपात होगा
$1+x^2+x^4+x^6+\ldots+x^{2010}$ बहुपद $(polynomial)$ को विभाजन करने वाले $1+x+x^2+x^3+\ldots+x^{n-1}$ बहुपद के लिए अंतराल $[1005,2010]$ में कितनो प्राकृत संख्याएं $(natural\,numbers)$ हों गी?
संख्याओं $3,\,{3^2},\,{3^3},\,......,\,{3^n}$ का गुणोत्तर माध्य है
अनन्त गुणोत्तर श्रेणी का प्रथम पद $x$ और उसका योग $5$ है, तब
यदि $a , b$ तथा $c$ तीन विभिन्न संख्यायें गुणोत्तर श्रेणी में है तथा $a+b+c=x b$ हो, तो $x$ का मान नहीं हो सकता है