किसी गुणोत्तर श्रेणी के प्रथम तीन पदों का योगफल $16$ है तथा अगले तीन पदों का योग $128$ है तो गुणोत्तर श्रेणी का प्रथम पद, सार्व अनुपात तथा $n$ पदों का योगफल ज्ञात कीजिए।
Let the $G.P.$ be $a, a r, a r^{2}, a r^{3}, \ldots .$ According to the given condition,
$a+a r+a r^{2}=16$ and $a r^{3}+a r^{4}+a r^{5}=128$
$\Rightarrow a\left(1+r+r^{2}\right)=16$ .........$(1)$
$a r^{3}\left(1+r+r^{2}\right)=128$ .........$(2)$
Dividing equation $(2)$ by $(1),$ we obtain
$\frac{a r^{3}\left(1+r+r^{3}\right)}{a\left(1+r+r^{2}\right)}=\frac{128}{16}$
$\Rightarrow r^{3}=8$
$\therefore r=2$
Substituting $r=2$ in $(1),$ we obtain $a(1+2+4)=16$
$\Rightarrow a(7)=16$
$\Rightarrow a=\frac{16}{7}$
$S_{n}=\frac{a\left(r^{n}-1\right)}{r-1}$
$\Rightarrow S_{n}=\frac{16}{7} \frac{\left(2^{n}-1\right)}{2-1}=\frac{16}{7}\left(2^{n}-1\right)$
यदि $a , b , c , d$ तथा $p$ कोई भी अशून्य वास्तविक संख्याएँ हैं, कि $\left( a ^{2}+ b ^{2}+ c ^{2}\right) p ^{2}-2( ab + bc + cd ) p +\left( b ^{2}+ c ^{2}\right.$ $\left.+ d ^{2}\right)=0$, है, तो
समीकरण $1 + a + {a^2} + {a^3} + ....... + {a^x}$ $ = (1 + a)(1 + {a^2})(1 + {a^4})$ के लिए $x$ का मान है
$2$ और $32$ के बीच $3$ गुणोत्तर माध्य हैं, तो तीसरे गुणोत्तर माध्य का मान होगा
समीकरण ${x^2} - 18x + 9 = 0$ के मूलों का गुणोत्तर माध्य होगा
यदि किसी गुणोत्तर श्रेणी का $p$ वाँ, $q$ वाँ व $r$ वाँ पद क्रमश: $a,\;b,\;c$ हो, तो ${a^{q - r}}.\;{b^{r - p}}.\;{c^{p - q}}$ =